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MODEL CHECKING IS REFINEMENT*
-- RELATINGBUCHITESTINGAND LINEAR-TIME TEMPORALLOGIC--

RANCECLEAVELANDtANDGERALDLUTTGEN$

Abstract. Thispaperdevelopsasemanticfoundationforreasoningaboutreactivesystemsspecifications
featuringcombinationsoflabeledtransitionsystemsandformulasin linear-timetemporallogic(LTL).Using
Biichiautomataasa semanticbasis,thepaperintroducestworefinementpreordersbasedonDeNicolaand
Hennessy'snotionof may-andmust-testing.Alternativecharacterizationsfor theserelationsareprovided
andusedtoshowthatthenewpreordersareconservativeextensionsofthetraditionalDeNicolaandHennessy
preorders.Thepaperthenestablishesatight connectionbetweenLTLformulasatisfactionandtheBiichi
must-preorder.Moreprecisely,it is shownthat a labeledtransitionsystemsatisfiesanLTL formulaif
andonlyif it refinesanappropriatelydefinedBiichiautomatonthat canbeconstructedfromtheformula.
Consequently,the Biichimust-preorderallowsfor a uniformtreatmentof traditionalnotionsof process
refinementandmodelchecking.Theimplicationsofthenoveltheoryareillustratedby meansofa simple
examplesystem,in whichsomecomponentsarespecifiedastransitionsystemsandothersasLTLformulas.

Key words. Biichiautomata,temporallogic,processalgebra,refinementpreorder,specification,testing

Subject classification. Computer Science

1. Introduction. Two schools of thought have emerged in the field of formal methods for designing and

reasoning about reactive systems. The first advocates the use of assertional approaches, in which different

formalisms are employed for describing system specifications and implementations. Typically, implementa-

tions are given in an operational, programming-oriented notation, while specifications are presented in a

declarative, logical style. The semantics of assertions is then applied to determine whether an implementa-

tion satisfies its specification. An example for this paradigm is model checking [5, 31, 36], where temporal

logics are used to specify properties that systems modeled by Kripke structures or labeled transition sys-

tems should satisfy. The second school favors refinement approaches in which a single formalism that is

equipped with a refinement relation is employed to represent a system's specification and implementation.

An implementation is deemed correct if it refines its specification. Process algebras [19, 27] fall into this clas-

sification, with traditional refinement relations being either behavioral equivalences, e.g., bisimulation [27],

or preorders, e.g., based on failures or testing [3, 11].

Both paradigms have advantages and disadvantages. Assertional approaches typically allow the formu-

lation of loose specifications which afford implementors great latitude in their design decisions; but they have

difficulty in supporting compositional reasoning, owing to the fact that the implementation and specification
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languages are different. On the other hand, compositionality is a hallmark of refinement approaches, since

one may typically refine one part of a system design independently of others. However, refinement-based

specifications are often seen as too detailed and, hence, too constraining for implementors. A formalism that

marries the benefits of the two styles would have obvious benefits, as the flexibility of assertional specifica-

tions could be combined with the virtues of refinement-oriented compositionality. Such a framework would

for example permit a project manager to give loose, assertional specifications of different system components

to different design teams. If the the composition of the abstract specifications have been determined to

satisfy a desired global system specification, the individual, detailed operational component designs returned

by the groups would be guaranteed to "compose" correctly.

The goal of this paper is to develop a unified semantic theory for heterogeneous system specifications

featuring mixtures of labeled transition systems and formulas in linear-time temporal logic (LTL). Using Biichi

automata [34] and the testing framework of DeNicola and Hennessy [11] as starting points, we approach this

problem by developing Biichi may- and must-preorders that relate Biichi processes on the basis of their

responses to Biichi tests. For these refinements preorders, we provide alternative characterizations and

employ them for proving conservative-extension results regarding DeNicola and Hennessy's testing theory.

We then establish the key result of this paper, namely that LTL model checking may be reduced to refinement

checking. More precisely, a Biichi process B+ can be constructed from an LTL formula _b in such a way that

a labeled transition system satisfies _bif and only if it is larger than B+ for the Biichi must-preorder. Finally,

we show that our must-preorder is compositional for a parallel composition operator that is inspired by the

one of CCS [27], and illustrate our technical results by a small example featuring the heterogeneous design

of a generic communication protocol.

The remainder of this paper is structured as follows. The next section motivates our work by means

of an example. Section 3 develops a theory of Biichi testing, including characterizations of the preorders

under consideration and their relation to well-established testing preorders. The connection between Biichi

must-testing and LTL model checking is investigated in Section 4. The specification framework is then

applied to the example in Section 5, while Section 6 discusses related work. Finally, Section 7 contains our

conclusions and directions for future work. The proofs of our main theorems are given in the appendix.

2. Motivating Example. As motivation for the work in this paper, consider the design of a very

simple communication protocol given in Figure 2.1.

send recv

Sender Medium Receiver

FIG. 2.1. A simple communication protocol

The architecture of the protocol has already been fixed by the system designers and consists of a sender

Sender, a medium Medium, and a receiver Receiver. The components communicate with the protocol's

environment and among themselves via channels. In case of component Sender, these are the channels



send,put, andgack(getacknowledgment). We use the notation ch? and ch! to indicate the reception

and sending of a message from and to channel ch, respectively, and refer to these activities as actions.

Each component in turn has its own specification. Receiver and Medium are given as labeled transition

systems, reflecting the fact that their designs are relatively advanced. The Sender, in contrast, is specified

assertionally by an LTL formula, i.e., on an abstract specification level. The formula states that whenever

a send? action occurs during an execution sequence of the sender, the remainder of the execution must

begin with a sequence of put ! actions followed by a gack? action} Finally, the overall specification of the

protocol's required behavior may be given by the following LTL formula.

Spec=dfG (send? -+ (F recv!))

This formula encodes a certainreliabilityguarantee ofthe protocolregardingthe eventual deliveryof mes-

sages. More precisely, it dictates that in any sequence of actions which the system performs, whenever a

send? action occurs, a recv! action eventually follows. An obvious question that a designer would be in-

terested in is whether the specification of the sender is "strong enough" to ensure that the protocol satisfies

Spec. The theory developed in this paper provides the semantic framework for answering this question.

A positive answer should be preserved when Sender is refined by a send

©
labeled transition system satisfying its LTL formula given in Figure 2.1,

such as the one depicted on the right. For this to be the case, the un- put

derlying refinement relation must be compatible with LTL satisfaction.

Moreover, it must be compositional, since Sender cannot be considered gack

in isolation, but is just one component of a larger system. Again, the

theory to be developed will support such a notion of refinement. F_G. 2.2. Refinement of Sender

3. A Theory of Bfichl Testing. In this section we extend the testing theory of DeNicola and Hen-

nessy [11], which was developed for labeled transition systems in a process-algebraic setting [11], to Biichi

automata. Traditional testing relates labeled transition systems with respect to their responses to tests

via two preorders, the may- and must-preorders, which distinguish whether systems may or must pass the

considered tests. The must-preorder has proved especially interesting because of various full-abstractness

results that have been established for it [26] and also because it is compositional with respect to a number

of different process constructs, including the parallel operators in Milner's CCS [27] and Hoare's CSP [19].

In this paper, we use Biichi automata as a basis for reasoning about mixed operational and assertional

specifications. These automata extend labeled transition systems by means of an acceptance condition for

infinite traces. However, the traditional Biichi semantics, which identifies automata having the same infinite

languages, is in general not compositional with respect to parallel composition operators, since it is insensitive

to the potential for deadlock. Our testing semantics is intended to overcome this problem. In the sequel,

we refer to Biichi automata as Biichi processes to emphasize that we are equipping Biichi automata with

a different semantics than the traditional one. In what follows, we first define Biichi processes and several

notions of traces and languages. We then introduce our notion of Biichi testing, develop Biichi may- and

must-preorders, establish alternative characterizations for the preorders, and show them to be conservative

extensions of DeNicola and Hennessy's may- and must-preorders.

1In this paper, we assume that LTL formulas are interpreted with respect to sequences of actions rather than sequences

of states, as is traditionally the case [30]. In formulas, we use actions a as atomic propositions, where a sequence of actions

satisfies proposition a if its first element is action a. The adaptation of the LTL semantics is straightforward (cf. Section 4).



3.1. BasicDefinitions. Oursemanticframeworkisdefinedrelativeto somealphabet ,4, i.e., a count-

able set of actions which does not include the distinguished unobservable, internal action T. In the sequel, we

let a, b,... range over ,4 and (_,/3,... over ,4U {T}. Biichi processes are distinguished from labeled transition

systems in their treatment of infinite traces. Whereas in labeled transition systems all infinite traces are

typically deemed possible, in Biichi processes only those infinite traces that go through designated Biichi

states infinitely oRen are considered actual executions.

DEFINITION 3.1 (Biichi process gz labeled transition system). A Biichi process is a tuple (P,--% v/,p),

where P is a countable set o/ states, ---+ C_P × (,4U {T}) × P is the transition relation, v / C_ S is the Biichi

set, and p E P is the start state. I/ v / = P we re/er to the Biichi process as labeled transition system, in

accordance with standard terminology.

For convenience, we often write (i) p' --% p" instead of (p',a,p") E---% (ii) p' --% for 9p" E P.p' _2_+ p,,

(iii) p' --+ for 9(_ E AU{T}, p" E P. p' --% p", and (iv) p'v/for p' E v/. If no confusion arises, we abbreviate

the Biichi process (P, ---% v/,p) by its start state p and refer to its transition relation and Biichi set as --+p

and V/p, respectively. Moreover, we denote the set of all Biichi processes by 7). Note that we do not require

Biichi processes to be finite-state.

DEFINITION 3.2 (Path _z trace). Let (P,---% v/,p) be a Biichi process. A path _ starting from state

p' • P is a potentially infinite sequence ((Pi_l,OZi,Pi))O<i<_k , where k • NU {oc}, such that k = O, or po = p'

and pi-1 --_ Pi, /or all 0 < i <_ k. We use I7_l to re/er to k, the length o/ 7_. I/ I7_l = oc, we say that 7_ is

infinite; otherwise, 7_ is finite. I/I_l • N and Pl_l--_, i.e., PIll is a deadlock state, path 7_ is called maximal.

Path 7_ is re/erred to as a Biichi path i/I_l = oc and I{i • NIpiv/}l = oc. The (visible) trace trace(7 0 o/ 7_

is defined as the sequence ((_i)icI_ • ,4* U .4 _, where In :dr {0 < i _ I_l I(_i _ T}.

We denote the sets of all finite paths, all maximal paths, and all Biichi paths starting from state p' • P by

IIfi, (p'), IIma×(p'), and IIB(p'), respectively. The empty path _ with I_l = 0 is symbolized by 0 and its empty

trace by e. We sometimes write a for trace (a) and use the notation p' _p p" to indicate that state p'

of Biichi process p may evolve to state p" when observing trace w for some path _ • IIfi,(p'). Formally,

p' _p p" if 9_ = ((Pi-l,ai,Pi))o<i<_k • IIfi,(p).p0 = p', Pk : P", and trace(_) = w. We may also introduce

different languages for Biichi process p.

_fin(P) Zdf {trace(Tr) 17r • I]fin(P)}

L_max(p) =df {trace(Tr) I_ • I]max(P)}

£:B(P) =dr {trace(Tr) I_ • IIs(p)}

c_ A*

C_A*

C_A*uA _

finite-trace language o/ p

maximal-trace language o/ p

Biichi-trace language o/ p

We also let Zp(p') =dr {a • .419p".p' _ p"} be the set of initial actions ofp in state p' • P.

A key notion for any theory of testing is a system's ability to diverge, i.e., to engage in an infinite internal

computation [17]. We say that state p' of Biichi process p is Biichi divergent or simply divergent, in signs p' _p,

if 9u • IIB (p'). trace(u) = e. State p' is called w-divergent for some w = (ai)0<i_<k • .4* O.4 _ if one can reach

a divergent state starting from p' when executing a finite prefix of w, i.e., if 9l • N, p" • P. l _ k, p' _ p",

and p" _p, where w' =dr (ai)0<i_<t. For convenience, we write £di_(P') for the divergent-trace language of p',

i.e., £di_(P') =dr {W • .4* O .4_ IP' _P W}. State p' is convergent or w-convergent, in signs p' _Lp and p' _Lpw,

if not p' _p and not p' _p w, respectively. Note that a finite trace w • £B(P) indicates that p is divergent

exactly after executing w. In the following, we often omit the indices of the divergence and convergence

predicates, as well as of the transition relations, whenever these are obvious from the context. Finally, we

write w • w' for the concatenation of finite trace w • .4* with the finite or infinite trace w' • .4* O .4_.



3.2. Testing Theory. The traditional testing framework of DeNicola and Hennessy defines behavioral

preorders that relate labeled transition systems with respect to their responses to tests [11]. Tests are

employed to witness the external interactions a system may have with its environment. In our setting, a test

is a Biichi process where certain states are considered to be success states. In order to determine whether a

system passes a test, one has to examine the finite and infinite computations that result when the test runs

in lock-step with the system under consideration.

DEFINITION 3.3 (Test, computation, _z success).

1. A Biichi test (T,---% v/, t, Suc) is a Biichi process (T,---% v/, t) together with a set Suc C_ T of

success states. If v / = 0, we call the test classical. The set of all Biichi tests is denoted by 7-.

2. A potential computation c with respect to a Biichi process p and a Biichi test t is a potentially infinite

sequence ((Pi-l,ti-1} a__-_r_ (Pi,ti})O<i<k, where k E NU {oc}, such that (1)Pi E P and ti E T, for

all 0 < i < k, and (2) ai E .4 U {v} and ri E {,, ,, ,}, for all 0 < i <_ k. The relation H is defined

by the following rules.

• (Pi-l,ti-l} _"L, (Pi, ti} if OZ i = T,

" (Pi-l,ti-1} _ (Pi, ti} if O_i = T,

" (Pi-l,ti-1} _-'_* (Pi,ti} if ai E .A,

ti-1 z ti,

pi-1 _ Pi,
a_

pi-1 ---%p Pi,

pi-1 __L+p Pi, and ti-1 _ Suc.

ti-1 ---_t ti, and ti-1 _ Suc.
c_i

ti-1 ---'%t ti, and ti-1 _ SUC.

c is finite, in signs Icl < oo, ilk E N. Otherwise, it is infinite, i.e., Icl -- oo. The projection projp(c)

of c on p is defined as ((Pi-l,(_i,Pi))icI; E H(p), where Zp ----dr {0 < i < klri E {,,*}}, and the

projection projt(c) of c on t as ((ti-l,(_i,ti))ici_ E H(p), where I_ =dr {0<i _ klri E {,,*}}.

A potential computation c is called computation, if it satisfies the following properties: (1) c is

maximal, i.e., k E N implies pk--_-+p, tk--_-+t, and Ip(pk) M lt(tk) = _, and (2) k = oo implies

projp(c) E HB(p). The set of all computations of p and t is denoted by C(p, t).

3. Computation c is called successful if tic I E 5uc, in case Icl < oo, or if projt(c) E Hs(t), in case

Icl -- oo. We say that p may pass t, if there exists a successful computation c E C(p, t). Analogously,

p must pass t, if every computation c E C(p, t) is successful.

Intuitively, an infinite computation of process p and test t differs from an infinite potential computation in

that in the former the process is required to enter a Biichi state infinitely often. An infinite computation

is then successful if the test also passes through a Biichi state infinitely often. Hence, in contrast with the

original theory of DeNicola and Hennessy, some infinite computations can be successful in our setting. Since

Biichi processes and Biichi tests potentially exhibit nondeterministic behavior, one may distinguish between

the possibility and inevitability of success. This is captured in the following definitions of the Biichi may-

and must-preorders.

DEFINITION 3.4 (Biichi Testing Preorders). Let p and q be Biichi processes. Then we define

r--may
• P _'-CL q if Vt E 7-. p mayOL t implies q mayOL t.

Frnust
• P _'-CL Lt if Vt E T. p mUStCL t implies q mUStCL t.

i--may
It is straightforward to check that the relations _'-CL and rmust_-CL on 7) are preorders, i.e., that they are

reflexive and transitive relations. The classical may- and must-preorders of DeNicola and Hennessy are

defined analogously, but on labeled transition systems and when restricting 7- to classical tests [11].

3.3. Alternative Characterizations. In the following, we present alternative characterizations of

the Biichi may- and must-preorders. The characterizations are similar in style to the ones developed by

DeNicola and Hennessy and provide the basis for comparing their testing theory to our Biichi testing.



THEOREM 3.5. Let p and q be Biichi processes. Then

V-maY ,_1. p _--CL _ if and only if £_i,(P) C_£_i,(q) and £s(P) C_£s(q).

tin,st if and only if for all w E .A* U .A_ such that p _ w, the following hold:2. p _--CL q

(a) q _ w

(b) Iwl < oc: Vq'. q _ q' implies 3p'.p _ p' and Zp(p') C_ffq(q').

Iwl = oc: w E £s(q) implies w E £s(P).

Test 1 Test 2

al

0) 4(
a 2 a 2

a 3 _ 13

£k

Test 6

+ ak

Test 3

11
2

Test 7

Test 4

\

Test 8

/

Test 5

Test 9

F_G. 3.1. Biichi tests used for characterizing the Biichi may- and must-preorders

With respect to finite traces, the characterizations are virtually the same as the ones of DeNicola and

Hennessy's preorders [II]. However, we needed to refine the classical characterizations in order to capture

the sensitivity of Bfichi may- and must-testing to infinite traces. The proof of the above characterization

theorem relies on the properties of the following specific Bfichi tests.

1. For w = (ai)o<i<_k E .A*, let tmay'* =df (T,---+, 0,0, {k}}, where T =df {0, 1,..., k} and ---+ =df

{(i-- 1, ai,i) I 0 < i _< k}.

2. For w = (ai)iCN E A °°, let t_ _y'°° =dr (r, ---% T, 0, 0}, where T =dr N0, ----+ =dr {(i -- 1, ai, i} l i E N}.

3. For w = (ai)0<i_<k E A*, let tm_y'dlv =dr (r,---% {k},0, O}, where T =dr {0, 1,... ,k}, ----+ =dr

{(i- 1, ai,i}10 < i < k} U {(k,r,k}}.

4. For w = (ai)o<i<_k E .d*, let t_ =dr (T, ---% _, 0, {s}}, where T =dr {0, 1,... , k} _ {s} and ----+ =dr

{(i- l, ai,i} lO < i <_ k} u {(i,T,s} lO < i < k}.

5. For w = (ai)iCN E .A °°, let t_w =df (T,-------+,T \ {8},0, {8}}, where T =df NO _ {8} and ---+ =df

{(i- 1, ai,i) li • N} u {(i,r,s) li • No}.

6. For w = (ai)o<i<_k • .4*, let tm_st'* =df (r,-------+, _, 0, {8}}, where T =df {0, 1,..., ]g} _ {8} and

'+ =df {(i -- 1,ai,i} IO < i <_ k} U {(i, r,s} IO <_ i < k}.



7. For w = (ai)o<i<_k E ,4*, let tmust'max =df (r, -----+, 0, 0, {81,82}>, where T =df {0, 1,..., k} ® {81,82}

and ---+ =df {(i -- 1,ai,i) I 0 < i _< k} U {(i,v, Sl) I 0 _< i < k} U {(k,a, s2)l a E A}.

8. For w = (ai)ie_ E A °°, we define tmust'°° =df (r, -----+, 0, 0, {8}), where T =df N0 _ {8} and ---+ =df

{(i- 1, ai,i) li • N} U {(i,v,s) li • No}.

9. For w = (ai)o<i<_k • A* and A C_A, let _,A÷must=dr (T, ---% 0, 0, {Sl, s2 }}, where T =dr {0, 1, ... , k}

{Sl,S2} and ----+=dr {(i-- 1, ai,i}lO < i _< k} U {(i,r, sl}l 0 _< i < k} U {(k,a, s2}l a • A}.

In order to increase comprehension, we also graphically depict the Biichi tests in Figure 3.1. Here, Biichi

states are marked by the symbol v / and success states are distinguished from regular states by thick borders.

Intuitively, while Biichi tests t may'* and t may'°° test for the presence of finite and Biichi trace w, respectively,vW vW

Biichi tests t may'dlv and t_ are capable of detecting divergent behavior when executing trace w. Biichi

tests t must'* t must'max and t must'°°_ , _ , _ are concerned with the absence of finite trace, maximal trace, and Biichi

trace w, respectively. Finally, Biichi test ÷must is capable of comparing the initial action sets of states reached
Vw,A

when executing trace w with respect to set A C_A.

Our specific Biichi tests satisfy the following desired properties. Their proofs are simple analyses of the

potential computations arising when running the Biichi tests in lock-step with arbitrary Biichi processes.

LEMMA 3.6. Let p be a Biichi process.

1. Let w • A*. Then, w • £_;,(p) if and only if pmayoL tmay'*_w "

2. Let w • .4 °°. Then, w • £B(P) if and only if p mayoL t_ ay'°°.

3. Let w • A*. Then, w • £B(P) if and only if pmayoL tmay'oivvw

#. Let w • A* U .4 °°. Then, p _ w if and only if p mUStOL t_.

must *5. Let w • A* such that p g w. Then, w _t £_i,(P) iS and only iSprnustcL t_ ' .

6. Let w • A* such that p _ w. Then, w _ £max(P) if and only iS p mustcL t must'max_ vJ

7. Let w • A °° such that p _ w. Then, w _ £B(P) if and only iS p rnustcL tmust'°°.

The proof of Theorem 3.5 relies extensively on these intuitive properties of Biichi tests and can be found

in Appendix A.1. For finite traces, it proceeds analogously to the corresponding proofs in [11]. For infinite

traces, it employs the infinite-state tests _wtmay'°°, t_, and _t.must'°° for the "_" proof directions, while the

reverse directions can be proved directly along the according definition of successful computation. Note that

the usage of infinite-state tests -- even when relating finite-state Biichi processes -- is justified by our view

that Biichi tests represent the arbitrary, potentially irregular behavior of the unknown system environment.

3.4. Conservative Extensions Results. In this section we investigate the relation of our Biichi

rmay and rmust respectively, as definedmay- and must-preorders to the corresponding classical preorders, _-DH _-DH,

by DeNicola and Hennessy [11]. It should be noted that their framework is restricted to image-finite labeled

transition systems and classical, image-finite tests; a labeled transition system or Biichi process is called

image-finite if every state has only a finite number of outgoing transitions for any action.

THEOREM 3.7. Let p and q be image-finite labeled transition systems.

F-may _ [---may1. If p and q are convergent, then p =CL _ if and only if p =DH q"

rmust if and only if p rmust2. p _--CL q ""DH q.

We refer the reader to Appendix A.2 for the proof of this theorem. In a nutshell, the second part follows

by inspection of the alternative characterizations of rmust and rmust The validity of the first part is a"CL "DH •

consequence of a result established by Narayan Kumar et al. in [28]. They introduced a notion of Biichi



testingfor labeledtransitionsystemsonly,ratherthanfor themoregeneralclassof Biichiprocesses,and
theyrequiredlabeledtransitionsystemsandBiichiteststo beconvergentandimage-finite.Relativeto their
restrictedframework,it iseasyto seethat ourandtheirdefinitionsofBiichitestsandpassing tests coincide.

Narayan Kumar et al. showed that their Biichi may- and must-preorders coincide with the ones of DeNicola

and Hennessy, i.e., (convergent) Biichi tests do not add distinguishing power to classical tests, if only labeled

transition systems are taken into account.

Note that Theorem 3.7(1) is invalid if one allows divergent labeled transition systems. As a counterex-

ample consider the labeled transition systems ({p}, {(p, w,p)}, {p},p) and ({q}, 0, {q}, q), as well as the Biichi
l--maytest ({t}, {(t,T,t)}, {t},t, 0>. Then, p =DH q since 0 = £_i,(P) C_£_i,(q) = {e}, but pE__c_ q since prnaycL t

and qrr_ycL t. The reason for the latter is that the infinite computation c • C(p, t), where p and t alternately

engage in a T-transition, is successful. However, the only computation of q and t is the empty computation.

This computation is unsuccessful since the set of success states of t is empty.

4. Bilchi Must-testing, Trace Inclusion, &: Linear-time Temporal Logics. In this section we

establish a connection between the Biichi must-preorder mmust and the satisfaction relation _ for linear-time_CL

temporal logic (LTL). More specifically, our goal is to show how to construct a Biichi process B¢ from an

LTL formula ¢ in such a way that p _ ¢ if and only if B¢ mmust_--CL P, for any labeled transition system p.

(Recall that a labeled transition system is a Biichi process in which every state is a Biichi state.) Our

result builds on automata-theoretic approaches to LTL model checking developed by Vardi and Wolper [36]

and others [6, 15, 20]. These approaches reduce the model-checking problem to one of checking language

containment between Biichi automata and rely on the generation of Biichi automata from LTL formulas. To

achieve our goal, we first show that mmust coincides with a form of trace inclusion when the lower process is_CL

"purely nondeterministic." Then we illustrate how the classical constructions of Biichi automata from LTL

formulas may be adapted to cope with the phenomena of deadlock and divergence that labeled transition

systems potentially exhibit. In what follows we assume that the set .4 of actions is finite.

4.1. Bilchi Must-testing gz Reverse Trace Inclusion. We start by characterizing the Biichi must-

preorder for a certain class of Biichi processes by means of trace inclusion. To state our result, we need to

introduce the notion of pure nondeterminism. We call a Biichi process p purely nondeterministic, if for

all pt • p: (i) pt _L+p implies p_ _/L+p, for all a • .4, and (ii) I{(a,p") • .4 × PIp _ --_p P"}I = 1. Note

that every Biichi process p can be transformed to a purely nondeterministic Biichi process pt, such that

£div(P) = £div(P_), £_i, (P) = £_i, (P_), £ma×(P) = £ma×(Pt), and £B(P) = £B(P_), by splitting every transition

pt __p p, into two transitions pt _L+p P(p',a,p") --_p pn, where P(p',a,p") _ P is a new, distinguished state.

THEOREM 4. I.

if and only if

Let p and q be Biichi processes such that p

(i) l:div(q) C_

(ii) L_¢io(q) \ L_iv(p) C_

(iii) £max(q) \ £_iv(P) C_

(iv) l_B(q) \ l_cllv(p) C

r--mustis purely nondeterministic. Then, p _-CL q

£_i,(P) (4.1)

c (p)

The proof of the "_"-direction again exploits Lemma 3.6, while the "_"-direction follows by considering

the contrapositive. Details can be found in Appendix A.3. The necessity of the premise of this theorem is il-

lustrated by the following example. Consider the Biichi processes p =dr ({Pl, P2 }, { (Pl, a, Pl ), (Pl, b, P2)}, 0, Pl)

and q =dr ({ql,q2}, {(ql, b, q2)}, 0, ql). Then p is not purely nondeterministic and Equation 4.1 obviously

holds, but p_st q since p mUStcL t and q ng/UStCLt, for the Biichi test t ----df ({tl, t2}, {(tl, a, t2)}, 0, tl, {t2}).



4.2. Constructing Bilchi Processes from LTL Formulas. We now define the version of LTL that

is considered in the sequel and show how an LTL formula may be converted into a purely nondeterministic

Biichi process, whose languages contain the traces that satisfy the formula.

4.2.1. Syntax and Semantics of LTL. Our variant of LTL interprets formulas with respect to se-

quences of actions [14] rather than states [13], since in our setting transitions and not states are labeled.

Accordingly, atomic propositions will also be interpreted with respect to actions. Moreover, our variant

extends traditional LTL in that its semantics is given with respect to infinite and finite traces, i.e., words

in ,4* U ,4 _ [25]. This permits formulas to constrain ongoing as well as deadlocking behavior. The formal

syntax for LTL formulas is defined by the following BNF.

¢ ::= tt I ffl a I _a I CA ¢ ICv ¢1 X¢l ?'¢1 ¢u¢ I ¢v¢

Here, a E .4 is an atomic proposition that is true of action a and false for all other actions. Moreover, )( is the

dual of the next-state operator X, which in contrast with traditional LTL is not self-dual in our setting since

we admit finite traces as models. In the following, we denote the set of all LTL formulas by _. We say that

a trace w = (ai)o<i__k E .4* U .fit°° satisfies ¢ if w _ ¢ holds. The relation _ C_ (.4* U .4_) x _ is the least

relation satisfying the conditions in Table 4.1, where wj stands for (ai)j<i<k E .4*, for any 1 _ j _ k. We also

say that a Biichi process p satisfies LTL formula 0, in signs p _ 0, if Vw E £max (P) U £s (P) U £dlv (P). W _ 0. It

should be noted that our syntax limits the application of negation to actions, rather than generally defining

a formula 7 0 with meaning w _ 7 0 if w b_ 0. This is not a restriction since our logic is self-dual, i.e., the

operators A and V, X and )(, and U and V are dual to each other.

TABLE 4.1

Semantics of LTL formulas

w

w

w

w

w

w

w

w

w

----tt

= a if w ¢ c and al ---- a

=_a if w _a

= (_1 n (_2 if W _ (_1 and w _ ¢2

= (_1 V (_2 if W _ (_1 or W _ (_2

=X¢ if w_candw2 _¢

= )(¢ if w ¢ c implies w2 _ ¢

= (_lU(_2 if 30 < i _ k. wi _ ¢2 and VO < j < i. wj _ ¢1

=¢1V¢2 if (VO<i_k. wi _¢2) or (30<i_k. wi _¢landVO<j _i. wj _¢2)

The intuitive meaning of the LTL operators is the following. The symbols tt and ff stand for the

propositional constants true and false, which are satisfied by every trace and no trace, respectively. A finite

or infinite trace satisfies the atomic proposition a if the trace is not empty and if its first action is a. It

satisfies _a if it does not satisfy a. The propositional constructs A and V have their usual interpretation

as conjunction and disjunction, respectively. The unary operators X and )( represent next-state operators.

Intuitively, the trace a • w satisfies X¢ and )(0, if w satisfies 0. The only difference between X¢ and )(0

arises when considering the empty trace ¢. Whereas ¢ satisfies )(0, it violates X¢. Formula 01 U02 represents

an until property and is satisfied by any trace which satisfies 01 until 02 becomes valid. 01V02 is a release

formula and is satisfied by any trace which satisfies 02 unless this formula is released from its obligation by

the truth of 01, which need never occur. Finally, we may introduce the derived operators G ("generally")

and F ("eventually"), already used in Section 2, by defining GO ----df ffV ¢ and F¢ ----df tt U 0.



IntheremainderofthissectionwedescribehowtoconstructapurelynondeterministicBiichiprocessBe

from LTL formula ¢ such that p _ ¢ if and only if Be rmust--_CL P, for any labeled transition system p. We

present the construction of Be in three stages.

4.2.2. Constructing Bilchi Processes: Infinite Traces. To begin with, we concentrate on infinite

traces and show how to build a convergent Biichi process B_ such that w E £B(B_) if and only if w E .400

and w _ 0. The construction of B_ can be done using existing techniques [9, 15, 36] for converting

traditional LTL formulas into Biichi automata. Note that formulas X¢ t and )(¢t coincide, for any 0_ E/F,

when considering only infinite traces as models. Using, e.g., the algorithm of [9], one may build a Biichi

automaton whose language contains the infinite traces satisfying 0. The states in this automaton are labeled

by sets of formulas, and the construction ensures that infinite Biichi traces emanating from a state are

guaranteed to satisfy each formula labeling this state. We now may adapt the following classical result.

THEOREM 4.2. Let ¢ be an LTL formula. Then there exists a Biichi process B_ such that w _ ¢ if and

only if w • £s(B_), for all w • A00.

One may immediately derive the following corollary.

COROLLARY 4.3. Let p be a convergent, deadlock-flee labeled transition system, and let ¢ be an LTL

formula. Then p _- ¢ if and only if £s(p) C_£s(B_).

4.2.3. Allowing Finite Maximal Traces. In the second stage of our construction of B¢, we show

how to generate a Biichi process B_ satisfying w _ ¢ if and only if w • £B(B_) U £max(B_), for any

w • .4* U .400. The basic approach relies on altering Biichi process B_ to handle finite traces. More

precisely, for every state s in B_ we check whether all formulas contained in s are satisfied by the deadlock

trace e. Checking for acceptance of the deadlock trace can be done syntactically, along the structure of

formulas. Next, for every state s in B_ such that each LTL formula ¢ labeling s is satisfied by e, we add a

transition s __L+5, where 5 is a new state that is labeled with {)(if}, which has e as its only model. However,

since we give deadlocks a meaning in form of state 5, we need to eliminate other states having no outgoing

transitions in B_. Such states correspond to logical contradictions, i.e., the set of formulas labeling such

states is not satisfiable. In B_ we eliminate such deadlock states by removing them from the acceptance set

if they are labeled as such, and then adding T-loops at each of these states.

PROPOSITION 4.4. Let ¢ be an LTL formula. Then there exists a Biichi process B_ such that:

1. Vw • .4*. w _- ¢ if and only if w • £max(B_)

2. Vw • A00. w _ ¢ if and only if w • £s(B_)

The second part of the proposition follows immediately from Theorem 4.2, since B_ and B_ possess the same

Biichi traces. The first part is a consequence of the fact that (i) our construction ensures that w • £max(B_)

if and only if s --_B_ 5 and that (ii) s --_B_ 5 holds if and only if w _ 0. As a consequence of this result,

we obtain the following theorem.

THEOREM 4.5. Let p be a convergent labeled transition system, and let ¢ be an LTL formula. Then

p _ ¢ if and only if £r, ax(P) C_£r, ax(B_) and £B(P) C_£B(B_).

4.2.4. Allowing Divergent Traces. As the third step in our construction, we generate a Biichi

process B_ that additionally takes divergent traces of labeled transition systems into account. Recall that

for general labeled transition systems p we defined p _ ¢ if w _ ¢ for all w • £ma×(P) 0 £B(P) 0 £dlv(P).
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WemodifyB_ to a Biichi process B_ by adding divergent states. Intuitively, the divergent states of B_

should have the following property. If w E A* is such that w. w t t= ¢ for any w t E A* UA0O, then the states

reachable in B_ via w should be divergent. In essence, divergence is intended to capture tautologies, i.e.,

LTL formulas satisfied by any trace. The construction of B_ relies firstly on the construction of a traditional

finite-state machine for recognizing words in A* satisfying the aforementioned property. This may be done

as follows.

1. Apply the traditional subset construction to determinize B_. The label of each state in the deter-

minized automaton will be a set of sets of LTL formulas.

2. For each state s, check whether the formula VFce(8) A¢cF ¢ is a tautology, where _(s) is the set of

sets of formulas labeling s in the determinized automaton. If so, mark state s as accepting. Note

that the tautology check can be performed algorithmically, although a consideration of this point is

beyond the scope of this paper.

It can be shown that a finite word w E A* is accepted by the resulting automaton A¢ if and only if w. w _ _- ¢

for any w _ E A* U A0o. We may now build B_ by first taking the synchronous product of B_ and A¢. States

in this product have the form (SB,SA), where sB is a state in B_ and SA is a state in A¢. Such a state

is a Biichi accepting state in B_ if sB is a Biichi state in B_ or if SA is an accepting state in A¢. In the

latter case, we make the state divergent by adding a r-loop to it. We also add a-loops to the state, for

every a E A, as well as a T-transition to 6. This construction leads to the following lemma and proposition.

LEMMA 4.6. Let s be the start state of Biichi process B_, and let w E A* U A0o be such that s _B_v w.

Then w • w' _- ¢, for any w' E .4* U .4 °°.

PROPOSITION 4.7. Let w E .4* U Moo. Then w _- ¢ if and only if w E l:ma×(B_) U I:B(B_) U l:dlv(B_).

The validity of this proposition is due to Proposition 4.4 when considering that B_ possesses by construction

the same maximal traces and the same infinite Btichi traces as B_. Thus, only the direction "_" for

divergent traces w E £dlv(B_) needs to be established. However, this case is taken care of by Lemma 4.6.

Before we can state and prove our main result of this section, we need one more lemma.

LEMMA 4.8. Let 0 be an LTL formula, and let p be a labeled transition system such that p _ O. Then

w E £_iv(P) implies w E £_i_(B_).

The proofs of this lemma follows from the fact that if w E £di_(P), then there exists a finite prefix w' of w

such that w' • w" E £di_(P). This implies that w' must lead to a divergent state in B_. Proposition 4.7

and Lemma 4.8 are the key for proving the following theorem,

arbitrary labeled transition systems. Its proof can be found in

THEOREM 4.9. Let p be a labeled transition system and ¢

which lifts Corollary 4.2 and Theorem 4.5 to

Appendix A.4.

an LT/_ formula. Then, p _ ¢ if and only if

(i) c_ c iv(Bg)
(ii) £ri,(P) \ C_
(iii) \ Co  (Bg) C

\Coi (Bg) C C (Bg)

Note that the "_" direction of Theorem 4.9 is invalid if p is allowed to be an arbitrary Biichi process. As

a counter-example, consider p =dr ({PI,P2,P3}, {(PI, a, p2), (PI, b,p3), (P3, b, p3)}, O,PI) and ¢ =dr a. Then

p _ a, since boo _ Ca(p), and b E £_i,(P) \ £di_(B_). But obviously b _ £_i,(B_).
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4.3. Relating LTL Satisfaction and the Biichi Must-preorder. As the last step in relating

the LTL satisfaction relation _ to the Biichi must-preorder y-must_-CL , we employ B_ to construct a Biichi

process B¢ such that p _ ¢ if and only if B¢ y-must_'-CL P" We first note that for any 0, B_ can be transformed to

a purely nondeterministic Biichi process B¢ while preserving all languages, as outlined in Section 4.1. Thus,

Theorem 4.9 is valid for B¢ as well as for B_. By combining Theorems 4.1 and 4.9 we obtain the desired

main result as a corollary.

COROLLARY 4.10 (Biichi Must-testing and LTL Model Checking). Let p be a labeled transition system

and ¢ be an LTL formula. Then we have p _- ¢ if and only if B¢ y-must_CL _'"

As a consequence of this corollary, our notion of Biichi must-testing not only extends DeNicola and Hen-

nessy's must-preorder [11] to Biichi processes, as well as the variant of Biichi must-testing introduced by

Kumar et al. [28], but is also compatible with the satisfaction relation of linear-time logics.

5. Motivating Example -- Revisited. In this section we illustrate the application of our theory by

revisiting and formalizing the motivating example introduced in Section 2. To do so, we need to define two

operators on Biichi automata: parallel composition and restriction.

Our parallel composition operator "1" and the restriction operator \A, where A C_ .4, are inspired by

the ones in the process algebra CCS [27]. We assume that alphabet .4 is composed of two sets .4! and .4?,

representing sending and receiving actions, such that for every a! E .4! there exists a corresponding a? E .4?,

and vice versa. Here, a should be interpreted as a channel name. The intuition for parallel composition in

CCS is that a process willing to send a message on channel a and another one able to receive a message on a

can do so by performing the actions a! and a? in synchrony with each other. This handshake is invisible to an

external observer, i.e., it results in the distinguished, unobservable action T. When adapting the CCS parallel

operator to our framework of Biichi processes, the questions that naturally arises concerns the interpretation

of Biichi traces. We adopt the following point of view: Intuitively, "fair merges" of Biichi processes p and q

should also be Biichi traces of Plq. Moreover, a Biichi trace of one process, when merged with a finite trace

of the other process, should result in a Biichi trace of Plq.

Formally, we define the parallel composition of Biichi processes (P,-----_p, V/p,p) and (Q,-----_q, v/q,q) to

be the Biichi process (PIO,-----+plq,V/plq,plq), where PIO =df {P'lq' IP' • P,q' • Q} u {q'lP' IP' • P,q' • Q}.

The transition relation -'-'+Plq is the least relation satisfying the following rules.

(1) p' ---_p p" implies P'lq' ---_plq q'lP" if p'v/p

(2) p' ---%p p" implies P'lq' ---%plq P"lq' if not p'v/p

(3) q' ---_q q" implies P'lq' ---_plq q"lP'

(4) p' --_p p" and q' --_-+q q" implies P'lq' --_Plq q"lP" if p'v/p

(5) p' --_pp" and q' a? q,,---% implies P'lq' -_Plq P"lq" if not p'v/p

(6) p' --_p p" and q' _2__q q,, implies P'lq' --L+plq q"lP" if p'v/p

(7) p' --_pp" and q' a! q,,---% implies P'lq' --S-+plqP"lq" if not p'v/p

These rules are in accordance with our above-mentioned intuition of system behavior. The "switching" of

the states ofp and q in Rules (1), (3), (4), and (6) allows us to fairly merge "Biichi traces with Biichi traces"

and "Biichi traces with finite traces" of the argument Biichi processes. This switching is also done for logical

conjunction in the construction of Biichi automata from LTL formulas [9]. Finally, the Biichi predicate V/plq

is defined by ptlqtv/pl q if pry/p, for any p_ • P and q_ • Q. A similar construction could be done for CSP-style
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parallel composition [19]. The unary restriction operator \A, for A C_ .4, essentially is a scoping mechanism

on channel names. Intuitively, p \ A is defined as the Biichi process p, except that all transitions labeled by

actions a! and a?, where a E A, are eliminated. One can now obtain the desired compositionality result of

the Biichi may- and must-preorders with respect to the new operators.

PROPOSITION 5.1. Letpl, P2, ql and q2 be Biichi processes and A C_.4. Then

r-may _" and ql r-may _---CLP2lq2"(i) Pl =eL _'z =eL q2 implies Pl [ql may

r-must r-must _ implies Pl Iql must5i) Pl _'-CL P2 and ql L---CL (t2 _--_CL P21q2"
r--may _ r--may

(iii) Pl _--CL P2 implies Pl \ A _--CL P2 \ A.

(iv) Pi E__ st P2 implies Pi \ A E__"ist P2 \ A.

The proof of this proposition can be done by exploiting the characterizations of the Biichi may- and must-

preorders and our conservative extension results, as presented in Sections 3.3 and 3.4. Regarding finite

traces, one can then adapt the corresponding proofs of DeNicola and Hennessy [11]. The compositionality

with respect to Biichi traces is straightforward regarding the restriction operator; for the parallel operator,

it is a consequence of the formalization of our intuition of fair merging.

Let us return to the motivating example of a generic communication protocol. To demonstrate that

the LTL specification of the sender is strong enough to ensure that the protocol is correct, in the sense of

satisfying the temporal formula Bspe¢ given in Section 2, we may use the results of this paper as follows.

1. Construct the purely nondeterministic Biichi process Bspe¢ for LTL formula Spec, as illustrated in

Section 4.2.

2. Construct the purely nondeterministic Biichi process Bs_nd_r for LTL formula ¢s_nd_r describing the

behavior of the sender.

3. Assemble the overall system: System Zdf (BSender I Medium lReceiver) \ {put, get, pack, gack}.

rmust System.4. Determine whether or not Bspec --_CL

In this case, the answer is positive, and Proposition 5.1 guarantees that replacing BSe_dez with any Biichi

process p such that BSender rmust_-CL p will ensure that the overall system meets its specification. If p is a

labeled transition system then BSe_dez rmust--_CL P holds exactly when p _ CSe_dez. One example of such a p is

the labeled transition system depicted in Figure 2.2.

6. Related Work. Other researchers have also investigated formalisms that permit some form of

combined assertional and operational reasoning. Of most direct relevance to this paper is the work of

Kurshan [23], who developed a theory of w-word automata that includes notions of synchronous and asyn-

chronous composition. However, his underlying semantic model maps processes to their maximal (infinite)

traces, and the associated notion of refinement is (reverse) trace inclusion. In theories of concurrency such as

CCS [27] and CSP [19], in which deadlock is possible, maximal trace inclusion is not compositional [26]. In

contrast, our must-preorder is compositional, at least for the operators presented here. The idea of testing

was also adopted by Valmari in [35] where a notion of tester process dealing with finite and infinite traces,

divergence, and failures is developed. Other work, such as that of Kupferman and Vardi [22], Grumberg

and Long [16], and Clarke, Long and McMillan [7] investigated modular and compositional model-checking

in similar non-deadlock environments. In each case, temporal formulas are used, sometimes in conjunc-

tion with additional processes to capture "environmental" information about the module being analyzed.

Andersen [1] developed an approach to compositional model checking in which formulas are "factored" by

parallel components given as labeled transition systems, yielding new formulas that must be satisfied by the
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systemcomprisingtheremainingcomponents.Hisworktakesplacein thesettingofpotentiallydeadlocked
processes,althoughtheproblemheconsideredismorenarrowlydefinedthantheonestudiedhere.

Relativelymoreworkhasbeendevotedto analyzingrelationshipsbetweenrefinement and logical ap-

proaches. One line of study relates temporal-logic specifications to refinement-based ones by establishing

that one system refines another if and only if it satisfies the same properties. Results along these lines were

pioneered by Hennessy and Milner [18] for bisimulation equivalence [27] and a modal logic of their devis-

ing [27]. Stirling developed similar characterizations for other refinement orderings and related logics [33].

The ideas were also adopted by Browne, Clarke and Grumberg [4] regarding bisimulation equivalence and the

branching-time temporal logic CTL*, by Dams [10] for several variants of the simulation preorder [27] and

the logic CTL, and by DeNicola and Vaandrager [12] with respect to branching bisimulation. Another line of

research involves the encoding of labeled transition systems as logical formulas, and vice versa. Steffen and

Ingolfsdottir [32] defined an algorithm for converting finite-state labeled transition systems into formulas in

the mu-calculus [21], while Larsen [24] demonstrated that certain mu-calculus formulas can be encoded as

bisimulation-based implicit specifications.

Finally, traditional testing has also been enriched with notions of fairness [2, 29]. These results, while not

addressing the issue of temporal logic, provide an alternative means -- besides introducing Biichi states --

of incorporating notions of infinite computation into labeled transition systems.

7. Conclusions and Future Work. In this paper we conservatively extended the testing theories

of DeNicola and Hennessy [11] and Narayan Kumar et al. [28] to Biichi processes. We illustrated that

Biichi processes provide a uniform basis for analyzing heterogeneous reactive-system specifications given

as a mixture of labeled transition systems and formulas in linear-time temporal logics (LTL). We then

studied the derived Biichi may- and must-preorders, developed alternative characterizations, and showed

that the Biichi must-preorder degrades to a variant of reverse trace inclusion when its first argument is

purely nondeterministic. Using the latter result, we established that standard algorithms for constructing

Biichi processes from LTL formulas can be adapted to our setting in such a way that LTL model checking

reduces to checking our form of trace inclusion. In a nutshell, we proved that

LTL model checking = Biichi must-preorder checking + pure nondeterminism.

Hence, LTL model checking may be viewed as refinement. To illustrate the utility of our novel frame-

work, we presented several operators for constructing specifications, argued that the Biichi must-preorder is

substitutive for the operators, and gave an example showing how they may be used to build system designs.

The results of this paper are important first steps towards a more ambitious goal, namely developing

languages combining operational and assertional styles of specification. Accordingly, future research should

focus on studying languages mixing operators from process algebras and LTL, which can be given a semantics

in terms of Biichi processes. For specific languages, one could then study compositionality issues, fully

abstractness, and axiomatic characterizations of our Biichi must-preorder, as is usually done in the field

of process algebra. For the sake of completing the theory of Biichi testing, we intend to investigate the

consequences of restricting our framework to finite-state tests. Moreover, we want to explore how well-

known algorithms for computing DeNicola and Hennessy's must-preorder [8] can be lifted to the Biichi

must-preorder on finite-state Biichi processes. We would also like to study theories supporting branching-

time logics as well.
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Appendix A. Proof of the Main Theorems.

A.1. Proof of Theorem3.5. Letp and q be Biichi processes.

1. For proving the "_"-direction, we distinguish the following cases.
i--may may,** w E Cfln(P): Then pmaycL tmay'* by Lemma 3.6(1) and, since p _--CL q, also qmaycL tw •

Applying Lemma 3.6(1) again, we obtain w E £fi, (q), as desired.

* w E £B(P): Here, we distinguish the cases ]w] = oc and ]w] < oc. In both cases, we closely

follow the lines of the first proof part, but use Lemma 3.6(2) and Biichi test t may'_vw , as well as

f may,*Lemma (3) and Biichi test vwtmay'dlv, respectively, instead of Lemma 3.6(1) and Biichi test -w •

For the "_"-direction, assume that t is a Biichi test satisfying p maycL t. Then there exists a

successful computation c E C(p,t) with w ----drtrace(projp(C)) ----trace(projt(c)). If Iwl -- oc we have

w E £B(P). Hence, w E £B(q), and we can construct a successful computation ct E C(q,t). The case

Iwl < _ is splitted into two sub-cases according to whether w E £fin(p) or w E £B(P). In either
w-maycase one can easily establish q maycL t. Therefore, p _--CL q, as desired.

r--must2. For the "_"-direction, assume p _-CL q, and let w E .4* U .4_ such that p _Lw.
r--must(a) Then p mUStcL t_w by Lemma 3.6(4) and, since p _---CL q, also q mUStcL t_w . Thus, we obtain

q _Lw by applying Lemma 3.6(4) again.

(b) Iwl < _: Let q _ qt for some q_, i.e., w E grin(q). Assume further that _ff.p _ p_ and

Ip(ff) C_lq(qt). We may distinguish the following cases.

* "p:_": Then w _ £fi,(p), and by Lemma 3.6(5) we obtain pmustcLt_ ust'*. However,

_(q mUStcL tmust'*_ by the same lemma.v w

* "p _": Let A =dr {Ip(P _) IP _ P_} # 0. By assumption, for every Ai E A there exists

an action ai E Ai \ lq(qt). Let B # 0 be the set of these actions. It is easy to see that

÷must However, must_(q rnustoL t w B) since÷must due to the construction of Biichi test _,B"p mUStcL _w,B

q_=_q for all actions ai E B.

Hence, r/mustPh_:CL q which is a contradiction.
r--mustIwl-- _: Assume w _ _B(P). Then pmustcL-wtmUst'_ by Lemma 3.6(7) and, since p _---CL q,

also must ooq mustoL t w ' . But then w _ £B(q) holds by Lemma 3.6(7), as desired.

For the proof of the "_"-direction, let t E T such that _(q rnustcL t), i.e., there exists an un-

successful computation c --- (((qi_l,ti_l),OZi, (qi,ti)))O<i__k E C(q,t). Let w ----df trace(projq(C)) ----

tmce(projt (c)). If p _ w, we can construct an unsuccessful, infinite computation ct which resembles c

until p can engage in its divergent Biichi computation, in which case we can force t not to contribute

to c_any more. Thus, c_ is an unsuccessful computation, since projp(C _) E HB(p), but ]projt(c_)] < _,

i.e., projt(c t) 6 UB(t).

For the remainder of this proof, let us assume p _L w, i.e., w _ £dlv(P). According to the definition

of (un)successful computations, we distinguish the following two cases.

. ]c] < _: Then w E £fin(q), q _ q_ for some q_, and tk _ Suc. Due to the maximality of

computations we also have qk-_q, tk-_t:, and Iq(qk) n 17t(tk) = 0. By Condition 2(a) of the

premise (el., right-hand side of the characterization in Theorem 3.5) we know of the existence

of some p_ such that p _ p_ and/:p(pt) C_ Iq(q_). Using these facts one may construct a

finite computation d = ((_Oi-l,t__l),C_i, _oi,t_)))0<i<l E C(p, t) with projt(d) = projt(c) and

_ol, t_) = _o', tk), where p_ _p p" for some p'-7_p. Note that such a S must exist since p _Lw.

Moreover, Zp(p,,) C_/:p(p') by the definition of/:p(.). Because/:,p(p")r_/Tt(t_) c_ Iq(q')_It(t'_) = 0
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holds,ct cannot be extended. Finally, d is unsuccessful since t_l = tk _ Suc.

• Icl -- c_. Hence, w E £B(q) and, since £B(q) C_£B(P), also W E £B(P). Then it is straightforward

to construct an unsuccessful computation c_ E C(p,t) with projt(c _) = projt(c).

In both cases we obtain _(p mustcL t). Summarizing, we have shown for an arbitrary test t E T that
r--must_(q mustcL t) implies _(p mustcL t), i.e., p "-OL q, as desired.

This finishes the proof of Theorem 3.5.

A.2. Proof of Theorem 3.7. Consider image-finite labeled transition systems only.

e _may
1. Under the additional assumption of convergence, the definitions oI t--CL and the Biichi-may preorder

introduced by Narayan Kumar et al. are identical. Narayan Kumar et al. showed their preorder to

coincide with r may" hence, also FmaY and r may coincide.
"-DH _ _'-CL "-DH

P: _a "'" q:

a a ...

F_O. A.1. (Counter-)example demonstrating the necessity of the image-finiteness assumption

2. We now establish _'-CLF-must= _'-DHY-mustby showing that the alternative characterizations of these preorders

coincide when considering the setting of DeNicola and Hennessy. The alternative characterization

of rmust (cf. Theorem 3.5(2)) differs from the one f rmusto_ _--CL in two ways: (i) the definition ofp _L w and_'-DH

q _Lw also permits the case w • A °_, and (ii) Condition (b) in Theorem 3.5(2) for Iwl = oc is missing.

Regarding the first point of departure, our definition of divergence implies for all w = (ai)icN • .d °_

the following.

Vk • N. (p _ Wk implies q _ Wk) implies (p _Lw implies q _Lw)

where Wk =df (ai)o<i<_k • A*. Thus, Condition (a) of Theorem 3.5(2) for infinite w is already

implied by the same condition for all finite prefixes of w. Moreover, our definition of divergence

coincides with the one of DeNicola and Hennessy for labeled transition systems. The second point

of departure can be addressed in a similar fashion. In fact, it is easy to establish that the following

holds for image-finite labeled transition systems p and q and for all w = (ai)ic5 • .A°e such that

pgw and qgw.

Vk • N. (Wk • 12fin(q) implies Wk • _fin(P)) implies (w • £B(q) implies w • £B(P))

where Wk Zdf (ai)o<i<_k • .A*. Note that in the case where w • .4", the w-convergence of q

implies w _ £B(q). As a consequence, Condition (a) implies Condition (b) under the assumptions of

Theorem 3.7. A (counter-)example demonstrating the necessity of the image-finiteness assumption

is depicted in Figure A.1.

Thus, the Biichi may- and must-preorders coincide with DeNicola and Hennessy's may- and must-preorders

in the considered setting, as desired.
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r--mustA.3. Proof of Theorem 4.1. For the proof of the "_"-direction, assume that p _-CL q, and let

w E ,4* U A °°. Then

r--must• W E £:div(q) if q _ w. By Lemma 3.6(4) we have _(q mUStcL tgw). Since p _-OL q also _(p mUStcL tgw)

holds, i.e., p _ w by applying Lemma 3.6(4) again. Thus, w E L;div(P).

• w E L;fi,(q) \ L;div(p) implies w E L;fi, (p), p _Lw, and also q _Lw by Equation 4.10). By Lemma 3.6(5)

r--must fmust,* ]we conclude _(q mUStcL vwt,must'*]j. Because of the premise p _CL q also _(p mUStcL vw j holds, i.e.,

w E L;fi, (p) by Lemma 3.6(5).

• The cases w E L;ma×(q) \ L;div(p) and w E L;B(q) \ L;div(p) are similar to the previous one but refer

to Lemma 3.6(6) and Lemma 3.6(7), respectively. As desired, we may obtain w E L;ma×(p) and

w E L;B(p), respectively.

Note that this proof direction does not require p to be purely nondeterministic.

For establishing the "_"-direction, assume that the language inclusions of Equation 4.1 hold. More-

over, assume the existence of a Biichi test t such that _(q rnustoL t). Thus, there exists an unsuccessful

computation c = (((qi-l,ti-1),ozi, (qi,ti)))0<i<k E C(q, t) with w =df trace(projq(C)) = trace(projt(c)). If

p _ w, then we can construct an unsuccessful, infinite computation c' which resembles c until p can engage

in its divergent Biichi computation, at which point t can be forced to stop contributing to c'. As desired,

computation c' is unsuccessful since projp(C') E HB(p), but Iprojt(c')l < oo, i.e., projt(c') _ HB(t).

For the remainder of this proof, let us assume p _L w, i.e., w ¢ L;div(p). According to the definition of

(un)successful computations, we distinguish the following two cases.

1. Icl < oo: Here, we have tk ¢ Suc.

(a) w E L;max(q): By Premise 4.1(iii) we have w E L;ma×(p). Then we can construct a finite compu-

tation c' = ((0)i_1, t__l) , a_, (Pi, t_)))0<i_</ E C(p, t) with projt(c') = projt(c) and t'I = tk. Thus,

c' is unsuccessful, since Ic'l < oo and t'l _ Suc.

(b) w E 12fin(q) \ 12max(q): In this case, we know of the existence of some a E ,4 such that qk --%q

and, because of the maximality of computations, tk--_t. Thus, w • a E 12fin(q) holds, and by

Premise 4.1(iv) we have w. a E 12fi, (p). Since p is purely nondeterministic, we may construct

a finite computation c' = (((Pi-1, t__l), a_, (Pi, t_)))0<i_<l E C(p, t), where projt(c') = projt(c),

t'l = tk and Pl --%p. Indeed, c' is maximal since t'l-7?-+t and P'l-_p for all b # a. Moreover, c'

is unsuccessful, because Ic'l < oo and t'l _ Suc.

2. Icl -- oo: Here, projt(c) _ HB(t). By Premise 4.1(iv) and since projq(C) E HB(q) due to the definition

of computation, we have w E 12B(p). Hence, we can construct an infinite computation c' E C(p, t)

such that projt(c') = projt(c). As a consequence, also c' is unsuccessful.

r--mustThus, _(pmustcL t) and, further, p _CL q, as desired.

A.4. Proof of Theorem 4.9. For establishing the "_" direction, let p _ ¢, i.e., w _ ¢ for all

W E _max (P) U £B (P) U £div (P). By Proposition 4.7 we also have w E _max (B_) U _B (B_) U £div (B_). We may

distinguish the following cases.

1. Case w E £dlv(P): This case is taken care of by Lemma 4.8.

2. Case w E £r;,(p) \ £dlv(B_): Since p is a labeled transition system, w E 12fin(p) is always a finite

prefix of a maximal trace or an infinite (Bi]chi) trace. Hence, we may conclude the existence of some

w' E ,4* U A °° such that w. w' E £ma×(B_) U £B(B_) U £dlv (B_). The other three inclusions, together
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with the fact that by construction, every divergent state s in B_ satisfies _max (S) = ,,4", we obtain

w E £_i, (B_), as desired.

3. Case w E £max(P) \ £0;v(B_): Hence, w E _4" and, together with Proposition 4.7, w E £max(B_).

4. Case w E £B(P) \ £0;v(B_): Then, w E _4°_, and as a consequence of Proposition 4.7, w E £B(B_).

Thus the language inclusions stated in equations (i) through (iv) are valid.

For proving the "_" direction, assume that p b_ _b, i.e., 3w E £max(P) U £B(P) U £dlv(P). W b_ _b. By

Proposition 4.7 we also know w _ £max(B_), w _ £B(B_), and w _(£dlv(B_). We distinguish the following

cases.

I. Case w E _max(P): Then, w E _ma×(P) \ _di_(B_). However, w _ _ma×(B_), which contradicts

Inclusion (iii).

2. Case w E £B(P): Hence, w E £B(P) \ £dlv(B_). However, w _(£B(B_), which is a contradiction to

Inclusion (iv).

3. Case w E £o;_(p): But w _ £dlv(B_), which contradicts Inclusion (i).

Thus, direction "_" holds, as desired.

20



Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

March 2000 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Model checking is refinement -- Relating Biichi testing and linear-

time temporal logic --

6. AUTHOR(S)

Rance Cleaveland and Gerald Liittgen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 2000-14

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-2000-210090
ICASE Report No. 2000-14

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

Submitted to 25th International Symposium on Mathematical Foundations of Computer Science.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 60, 61
Distribution: Nonstandard

Availability: NASA-CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This paper develops a semantic foundation for reasoning about reactive systems specifications featuring combinations

of labeled transition systems and formulas in linear-time temporal logic (LTL). Using Biichi automata as a semantic

basis, the paper introduces two refinement preorders based on DeNicola and Hennessy's notion of may- and must-

testing. Alternative characterizations for these relations are provided and used to show that the new preorders
are conservative extensions of the traditional DeNicola and Hennessy preorders. The paper then establishes a tight

connection between LTL formula satisfaction and the Biichi must-preorder. More precisely, it is shown that a labeled

transition system satisfies an LTL formula if and only if it refines an appropriately defined Biichi automaton that

can be constructed from the formula. Consequently, the Biichi must-preorder allows for a uniform treatment of

traditional notions of process refinement and model checking. The implications of the novel theory are illustrated

by means of a simple example system, in which some components are specified as transition systems and others as
LTL formulas.

14. SUBJECT TERMS
Biichi automata, temporal logic, process algebra, refinement preorder, specification,

testing

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

NSN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

15. NUMBER OF PAGES

25

16. PRICE CODE

A03
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102


